
Software Testing
and

Software Development
Lifecycles

Executive Summary
This paper outlines a number of commonly used software development lifecycle models,
with particular emphasis on the testing activities involved in each model.

Irrespective of the lifecycle model used for software development, software has to be
tested. Efficiency and quality are best served by testing software as early in the lifecycle
as practical, with full regression testing whenever changes are made.

IPL is an independent software house founded in 1979 and based in Bath. IPL was
accredited to ISO9001 in 1988, and gained TickIT accreditation in 1991. IPL has
developed and supplies the AdaTEST and Cantata software verification products.
AdaTEST and Cantata have been produced to these standards.

Copyright
This document is the copyright of IPL Information Processing Ltd. It may not be
copied or distributed in any form, in whole or in part, without the prior written
consent of IPL.
IPL
Eveleigh House
Grove Street
Bath
BA1 5LR
UK
Phone: +44 (0) 1225 444888
Fax: +44 (0) 1225 444400
email ipl@iplbath.com

Last Update:03/07/1997 08:26:00
File: LIFE_C.DOC

©IPL Information Processing Ltd
2

1. Introduction
The various activities which are undertaken when developing software are commonly
modelled as a software development lifecycle. The software development lifecycle
begins with the identification of a requirement for software and ends with the formal
verification of the developed software against that requirement.

The software development lifecycle does not exist by itself, it is in fact part of an overall
product lifecycle. Within the product lifecycle, software will undergo maintenance to
correct errors and to comply with changes to requirements. The simplest overall form is
where the product is just software, but it can become much more complicated, with
multiple software developments each forming part of an overall system to comprise a
product.

There are a number of different models for software development lifecycles. One thing
which all models have in common, is that at some point in the lifecycle, software has to
be tested. This paper outlines some of the more commonly used software development
lifecycles, with particular emphasis on the testing activities in each model.

2. Sequential Lifecycle Models
The software development lifecycle begins with the identification of a requirement for
software and ends with the formal verification of the developed software against that
requirement. Traditionally, the models used for the software development lifecycle have
been sequential, with the development progressing through a number of well defined
phases. The sequential phases are usually represented by a V or waterfall diagram. These
models are respectively called a V lifecycle model and a waterfall lifecycle model.

Requirements
Analysis

Architectural
Design

Detailed
Design

Code and
Unit Test

Acceptance
Test

System
Integration

Software
Integration

Figure 1 V Lifecycle Model
There are in fact many variations of V and waterfall lifecycle models, introducing
different phases to the lifecycle and creating different boundaries between phases. The
following set of lifecycle phases fits in with the practices of most professional software
developers.

• The Requirements phase, in which the requirements for the software are gathered
and analyzed, to produce a complete and unambiguous specification of what the
software is required to do.

©IPL Information Processing Ltd
3

• The Architectural Design phase, where a software architecture for the
implementation of the requirements is designed and specified, identifying the
components within the software and the relationships between the components.

Requirements
Analysis

Architectural
Design

Detailed
Design

Code and
Unit Test

Software
Integration

System
Integration

Acceptance
Test

Figure 2 Waterfall Lifecycle Model

• The Detailed Design phase, where the detailed implementation of each component
is specified.

• The Code and Unit Test phase, in which each component of the software is coded
and tested to verify that it faithfully implements the detailed design.

• The Software Integration phase, in which progressively larger groups of tested
software components are integrated and tested until the software works as a whole.

• The System Integration phase, in which the software is integrated to the overall
product and tested.

• The Acceptance Testing phase, where tests are applied and witnessed to validate
that the software faithfully implements the specified requirements.

Software specifications will be products of the first three phases of this lifecycle model.
The remaining four phases all involve testing the software at various levels, requiring
test specifications against which the testing will be conducted as an input to each of these
phases.

3. Progressive Development Lifecycle Models
The sequential V and waterfall lifecycle models represent an idealised model of software
development. Other lifecycle models may be used for a number of reasons, such as
volatility of requirements, or a need for an interim system with reduced functionality
when long timescales are involved. As an example of other lifecycle models, let us look
at progressive development and iterative lifecycle models.

A common problem with software development is that software is needed quickly, but it
will take a long time to fully develop. The solution is to form a compromise between
timescales and functionality, providing "interim" deliveries of software, with reduced

©IPL Information Processing Ltd
4

functionality, but serving as a stepping stones towards the fully functional software. It is
also possible to use such a stepping stone approach as a means of reducing risk.

The usual names given to this approach to software development are progressive
development or phased implementation. The corresponding lifecycle model is referred
to as a progressive development lifecycle. Within a progressive development lifecycle,
each individual phase of development will follow its own software development
lifecycle, typically using a V or waterfall model. The actual number of phases will
depend upon the development.

Phase 1 Development Interim
Delivery 1

Phase 2 Development Interim
Delivery 2

Final Phase Final
Delivery 2

Figure 3 Progressive Development Lifecycle

Each delivery of software will have to pass acceptance testing to verify the software
fulfils the relevant parts of the overall requirements. The testing and integration of each
phase will require time and effort, so there is a point at which an increase in the number
of development phases will actually become counter productive, giving an increased cost
and timescale, which will have to be weighed carefully against the need for an early
solution.

The software produced by an early phase of the model may never actually be used, it
may just serve as a prototype. A prototype will take short cuts in order to provide a
quick means of validating key requirements and verifying critical areas of design. These
short cuts may be in areas such as reduced documentation and testing. When such short
cuts are taken, it is essential to plan to discard the prototype and implement the next
phase from scratch, because the reduced quality of the prototype will not provide a good
foundation for continued development.

4. Iterative Lifecycle Models
An iterative lifecycle model does not attempt to start with a full specification of
requirements. Instead, development begins by specifying and implementing just part of
the software, which can then be reviewed in order to identify further requirements. This
process is then repeated, producing a new version of the software for each cycle of the
model.

Consider an iterative lifecycle model which consists of repeating the four phases in
sequence, as illustrated by figure 4.

©IPL Information Processing Ltd
5

Requirements

Implementation
 & Test

Design

Review

Start

Complete

Figure 4 Iterative Lifecycle Model

• A Requirements phase, in which the requirements for the software are gathered and
analyzed. Iteration should eventually result in a requirements phase which produces
a complete and final specification of requirements.

• Design phase, in which a software solution to meet the requirements is designed.
This may be a new design, or an extension of an earlier design.

• An Implementation and Test phase, when the software is coded, integrated and
tested.

• A Review phase, in which the software is evaluated, the current requirements are
reviewed, and changes and additions to requirements proposed.

For each cycle of the model, a decision has to be made as to whether the software
produced by the cycle will be discarded, or kept as a starting point for the next cycle
(sometimes referred to as incremental prototyping). Eventually a point will be reached
where the requirements are complete and the software can be delivered, or it becomes
impossible to enhance the software as required, and a freash start has to be made.

The iterative lifecycle model can be likened to producing software by successive
approximation. Drawing an analogy with mathematical methods which use successive
approximation to arrive at a final solution, the benefit of such methods depends on how
rapidly they converge on a solution.

Continuing the analogy, successive approximation may never find a solution. The
iterations may oscillate around a feasible solution or even diverge. The number of
iterations required may become so large as to be unrealistic. We have all seen software
developments which have made this mistake!

The key to successful use of an iterative software development lifecycle is rigorous
validation of requirements, and verification (including testing) of each version of the
software against those requirements within each cycle of the model. The first three
phases of the example iterative model are in fact an abbreviated form a sequential V or
waterfall lifecycle model. Each cycle of the model produces software which requires
testing at the unit level, for software integration, for system integration and for
acceptance. As the software evolves through successive cycles, tests have to be repeated
and extended to verify each version of the software.

©IPL Information Processing Ltd
6

5. Maintenance
Successfully developed software will eventually become part of a product and enter a
maintenance phase, during which the software will undergo modification to correct
errors and to comply with changes to requirements. Like the initial development,
modifications will follow a software development lifecycle, but not necessarily using the
same lifecycle model as the initial development.

Throughout the maintenance phase, software tests have to be repeated, modified and
extended. The effort to revise and repeat tests consequently forms a major part of the
overall costs of developing and maintaining software.

The term regression testing is used to refer to the repetition of earlier successful tests in
order to make sure that changes to the software have not introduced side effects.

6. Summary and Conclusion
Irrespective of the lifecycle model used for software development, software has to be
tested. Efficiency and quality are best served by testing software as early in the lifecycle
as practical, with full regression testing whenever changes are made.

Such practices become even more critical with progressive development and iterative
lifecycle models, as the degree of retesting needed to control the quality of software
within such developments is much higher than with a more traditional sequential
lifecycle model.

Regression testing is a major part of software maintenance. It is easy for changes to be
made without anticipating the full consequences, which without full regression testing
could lead to a decrease in the quality of the software. The ease with which tests can be
repeated has a major influence on the cost of maintaining software.

A common mistake in the management of software development is to start by badly
managing a development within a V or waterfall lifecycle model, which then
degenerates into an uncontrolled iterative model. This is another situation which we have
all seen causing a software development to go wrong.

AdaTEST and Cantata are tools which facilitate automated, repeatable and maintainable
testing of software, offering significant advantages to developers of Ada, C and C++
software. The benefits of repeatable and maintainable testing, gained from using
AdaTEST or Cantata, become even more important when a progressive development or
iterative model is used for the software development lifecycle.

There are a wide range of software development lifecycle models which have not been
discussed in this paper. However, other lifecycle models generally follow the form and
share similar properties to one of the models described herein, offering similar benefits
from the use of AdaTEST or Cantata.

	1. Introduction
	2. Sequential Lifecycle Models
	3. Progressive Development Lifecycle Models
	4. Iterative Lifecycle Models
	5. Maintenance
	6. Summary and Conclusion

